Stereoselective Preparation of (Z)- α , β -Difluorostyrenes and Stereospecific Conversion to (E)-α,β-Difluoro-β-iodostyrenes¹

Charles R. Davis² and Donald J. Burton*

Department of Chemistry, University of Iowa, Iowa City, Iowa 52242

Received August 4, 1997[®]

Substituted aromatic iodides coupled with (E)-HFC=CFZnI (E:Z 95:5) under mild conditions, in the presence of catalytic Pd(PPh₃)₄, in DMF to give (Z)- α , β -difluorostyrenes in good yields. The coupling reaction was tolerant of a variety of functionalities. Isomerically pure (Z)- α,β -difluorostyrenes were readily converted to the corresponding (E)- α,β -difluoro- β -iodostyrenes in good yields by two methods; in one method, treatment of the (Z)- α , β -difluorostyrenes with LTMP at lowtemperature gave vinyllithium reagents which were captured in situ with Bu₃SnCl to form vinylstannanes. The intermediate vinylstannanes could be isolated or treated directly with I_2 to give (E)- α , β -difluoro- β -iodostyrenes in a one-flask procedure. In a second approach, *n*-BuLi was utilized to pregenerate vinyllithium reagents which were quenched with I_2 to afford (*E*)- α , β -difluoro- β -iodostyrenes.

Introduction

Fluorinated styrenes are useful building blocks in organofluorine chemistry and have found application as monomers,³ as precursors for antiinflammatory⁴ and antifertility⁵ compounds, and as precursors for 1,4-diarylperfluoro-1,3-butadienes.6

Several strategies have been applied in the preparation of α,β -difluorostyrenes. α,β -Difluorostyrene has been prepared in low yield by dehalogenation of 1-chloro-1phenyl-1,2,2-trifluoroethane.⁷ The stereochemistry of the resultant styrene was not reported. Dehydrofluorination of 1-phenyl-1,1,2-trifluoroethane resulted in a low yield of α,β -diffuorostyrene; this dehydrofluorination was not extended to other 1-aryl-1,1,2-trifluoroethanes.⁸ Lowtemperature metalation of several isomeric α,β -difluoro- β -chlorostyrenes with an alkyllithium reagent, followed by hydrolysis, has been reported to give predominantly (E)- α , β -difluorostyrenes.⁹ Protodesilylation of (Z)-1,2difluoro-2-arylvinylsilanes by potassium fluoride in aqueous DMSO gave (*E*)- α , β -difluorostyrenes.^{10,11} In a recent preliminary communication,¹² we briefly described a procedure for the preparation of (Z)- α,β -difluorostyrenes. However, a general, stereoselective preparation of (E)- α,β -difluoro- β -iodostyrenes has not been reported. Several α,β -difluoro- β -iodostyrenes have been obtained by a Hunsdiecker reaction of α,β -difluorocinnamic acid salts,

- (4) Middleton, W. J.; Bingham, E. M. J. Fluorine Chem. 1983, 22, 561 - 574
- (5) .Middleton, W. J.; Metzger, D.; Snyder, J. A. J. Med. Chem. 1971, 14, 1193-1197.
- (6) Sevestiyan, A. P.; Fialkov, Yu. A.; Khranovskii, V. A.; Yagupol-(6) Sevestivan, A. F., Flankov, Fu. A., Khranovskii, V. A., Fagupol-skii, L. M. Zh. Org. Khim. 1978, 14, 204–205.
 (7) Prober, M. J. Am. Chem. Soc. 1953, 75, 968–973.
 (8) Leroy, J. J. Org. Chem. 1980, 46, 206–209.
 (9) Martin, S.; Sauvetre, R.; Normant, J. F. Tetrahedron Lett. 1982, and 1990.
- 23, 4329-4332.
- (10) Yagupolskii, L. M.; Cherednichenko, P. G.; Kremlev, M. M. J. Org. Chem. USSR (English Transl.) **1987**, 23, 246–248.
- (11) Martin, S.; Sauvetre, R.; Normant, J. F. Tetrahedron Lett. 1983, 24, 5615-5618
- (12) Davis, C. R.; Burton, D. J. Tetrahedron Lett. 1996, 37, 7237-7240

S0022-3263(97)01434-5 CCC: \$14.00

but this method is applicable to the preparation of only the (Z)-isomers.⁶ (Z)-PhCF=CFI has been prepared via iodination of (E)-PhCF=CFLi.¹¹ More recently, a series of the (Z)-isomers has been prepared by iodination of (Z)-2-aryl-1,2-difluorovinylphosphoranes.¹³ The paucity of methodology for the preparation of (E)- β -iodostyrenes analogues has impeded their utility as synthetic intermediates and has been due, in part, to the lack of suitable stereodefined precursors. Here we describe in detail the stereoselective preparation of (Z)- α , β -diffuorostyrenes and their subsequent conversion to (E)- α , β -difluoro- β iodostyrenes.

Results and Discussion

Our recent development of (E) and (Z)-difluoroethene synthons¹⁴ and our prior studies with fluorinated zinc reagents¹⁵ prompted us to investigate a route to (*Z*)- α , β difluorostyrenes via the Pd(PPh₃)₄-catalyzed arylation of (*E*)-HFC=CFZnI, **3**. Vinylzinc reagent **3** was prepared in two steps from 1, which is readily prepared from bromotrifluoroethylene¹⁴ or chlorotrifluoroethylene.¹⁶ Iododesilylation¹⁷ of **1** with KF/I₂ gave a mixture of (*E*)-HFC=CFI, **2**, and Et₃SiF (eq 1).

$$\begin{array}{c|c} F & & KF/I_2 \\ H & SiEt_3 & DMSO \\ 1 & rt \\ (E:Z \ 95:5) \end{array} \quad \begin{array}{c} F & F \\ H & I \\ (E:Z \ 95:5) \end{array} \quad (eq \ 1) \\ \end{array}$$

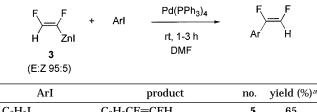
The mixture of Et₃SiF and **2**, after removal from the reaction mixture under vacuum, was treated with activated zinc metal in DMF to give **3** (55–63%, based on **1**, as determined by internal PhCF₃ standard) and 1,2difluoroethylene, 4 (eq 2). Zinc reagent 3 exhibits excel-

[®] Abstract published in Advance ACS Abstracts, December 1, 1997. (1) Presented in part at the 15th International Symposium of Fluorine Chemistry, Vancouver, B. C., Aug 1997.

⁽²⁾ Current address: Department of Chemistry, Augustana College, Rock Island, IL, 61201.

⁽³⁾ Reynolds, D. W.; Cassidy, P. E.; Johnson, C. G.; Cameron, M. L. J. Org. Chem. 1990, 55, 4448-4454.

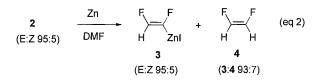
⁽¹³⁾ Ling Xue, Ph.D. Thesis, University of Iowa, 1996; presented, in part, at the 11th ACS Winter Fluorine Conference, Abstr. No. P56.


⁽¹⁴⁾ Fontana, S. A.; Davis, C. R.; He, Y. H.; Burton, D. J. Tetrahedron 1996, 52, 37-44.

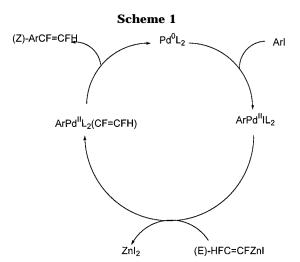
⁽¹⁵⁾ For a review, see: Burton, D. J.; Yang, Z. Y.; Morken, P. A. *Tetrahedron* **1994**, *50*, 2993–3063. (16) Hiyama, T.; Nishide, K.; Obayashi, M. *Chem. Lett.* **1984**, *10*,

¹⁷⁶⁵⁻¹⁷⁶⁸

⁽¹⁷⁾ Iododesilylation has been used extensively in our group to prepare (*E*)- and (*Z*)-RCF=CFI from (*E*)- and (*Z*)-RCF=CFSiR₃, unpublished results, University of Iowa.

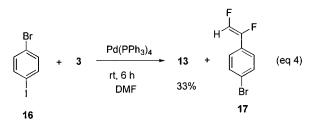

Table 1. Pd(PPh₃)₄ Catalyzed Arylation of (*E*)-HFC=CFZnI

C ₆ H ₅ I	$C_6H_5CF = CFH$	5	65
p-CH ₃ OC ₆ H ₄ I	p-CH ₃ OC ₆ H ₄ CF=CFH	6	85
p-NO ₂ C ₆ H ₄ I	p-NO ₂ C ₆ H ₄ CF=CFH	7	66 ^b
o-NO ₂ C ₆ H ₄ I	o-NO ₂ C ₆ H ₄ CF=CFH	8	78
p-CH ₃ C ₆ H ₄ I	p-CH ₃ C ₆ H ₄ CF=CFH	9	72
p-EtO ₂ CC ₆ H ₄ I	p-EtO ₂ CC ₆ H ₄ CF=CFH	10	93
p-CH ₃ C(O)C ₆ H ₄ I	p-CH ₃ C(O)C ₆ H ₄ CF=CFH	11	71
m-ClC ₆ H ₄ I	m-ClC ₆ H ₄ CF=CFH	12	60
$1,4-C_{6}H_{4}I_{2}$	<i>p</i> -HFC=CFC ₆ H ₄ CF=CFH	13	80
p-CF ₃ C ₆ H ₄ I	p-CF ₃ C ₆ H ₄ CF=CFH	14	70
o-(CH ₃) ₂ CHC ₆ H ₄ I	o-(CH ₃) ₂ CHC ₆ H ₄ CF=CFH	15	55^{c}


^{*a*} Isolated yield of (*Z*)-isomer only. ^{*b*} Isolated as a 95:5 (*Z*:*E*) mixture; reaction was carried out at 0 °C. ^{*c*} Reaction conditions: 60 °C, 8 h.

lent thermal stability. Significant loss of molarity, with concomitant formation of **4**, occurred only after extended heating (12 h) at temperatures at or above 100 °C. Treatment of **3** with HCl resulted in quantitative formation of **4** by ¹⁹F NMR analysis.

Substituted aromatic iodides coupled smoothly under mild conditions with **3**, in the presence of catalytic Pd-(PPh₃)₄, to give (*Z*)- α , β -difluorostyrenes in good to excellent yields (eq 3).


Table 1 summarizes our results. The coupling reaction was tolerant of a variety of functionalities; significant differences in reaction time or yield were not observed between electron-releasing and electron-withdrawing groups. One exception was the reaction of *p*-NO₂C₆H₄I with 3 which gave 7 in reasonable yield when carried out at 0 °C. Arylation of 3 with the sterically hindered o-(CH₃)₂CHC₆H₄I substrate was optimized on heating. *p*-Diiodobenzene coupled with 2 equivalents of **3** to give the 1,4-disubstituted product 13. In each case, an excess of **3** (1.3–1.5 equiv) was utilized to completely consume the aryl iodide, thus avoiding a separation problem. In no case was the minor (E)- α , β -difluorostyrene isomer detected at a level above 5% of the product mixture. Except for 7, the major (Z)-isomer was separated from the (E)-isomer impurity by silica gel column chromatography. The coupling reaction is proposed to proceed via the following catalytic cycle (Scheme 1). Oxidative addition of ArI to Pd⁰L₂ is followed by metathesis with vinylzinc reagent 3; subsequent reductive elimination of

ArPdL₂(CF=CFH) affords the styrene product and regenerates $Pd^{0}L_{2}$.^{18,19}

Although reaction of **3** with aryl iodides proceeds under mild conditions, **3** did not undergo arylation with p-CH₃C₆H₄Br under similar conditions (12 h, room temperature).

Reaction of **16** with 1.5 equiv of **3**, however, gave a mixture from which **13** was isolated, strongly suggesting that aryl bromides containing electron-withdrawing groups will undergo similar coupling (eq 4).

(*Z*)- α , β -Difluorostyrenes were readily converted to (*E*)- α,β -difluoro- β -iodostyrenes in good yields. In one approach (method A), (Z)- α , β -difluorostyrenes, **18**, were treated with Li-2,2,6,6-tetramethylpiperidide (LTMP) at -78 °C, and the resultant vinyllithium reagents were trapped in situ with Bu₃SnCl to form the vinylstannanes, 19 (Scheme 2). Subsequent cleavage of the tin moiety with I_2 gave the iodostyrenes, **20**. Although vinylstannanes 19a and 19b were isolated, the transformation was amenable to a one-flask procedure. Reaction mixtures containing the intermediate vinylstannanes 19c and 19d were treated directly with I_2 (entries 9 and 10, Table 2) to give 27 and 28, respectively. The hindered LTMP base was employed to hinder side reaction of the base with Bu₃SnCl. In a second approach (method B), the iodostyrenes were directly prepared by low-temperature iodination of pregenerated vinyllithium reagents, 21 (Scheme 2). Method B is particularly convenient for preparation of iodostyrenes containing functionalities compatible with *n*-BuLi, as preparation of LTMP is not required and separation of Bu₃SnI is avoided. Our results utilizing both approaches are summarized in Table 2.

Although the vinyllithium reagents were successfully trapped in situ with Bu₃SnCl at -78 °C in method A, method B was not attempted at -78 °C. As a minor component of a (*E*/*Z*) mixture, (*Z*)-PhCF=CFLi has been

⁽¹⁸⁾ Heinze, P. L.; Burton, D. J. J. Org. Chem. **1988**, 53, 2714–2720.

⁽¹⁹⁾ Negishi, E. Acc. Chem. Res. 1982, 15, 340-348.

Stereoselective Preparation of (Z)- α , β -Difluorostyrenes

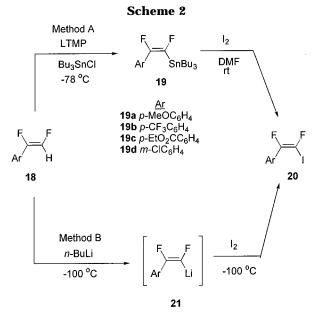
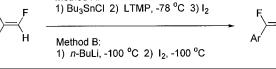



Table 2.Conversion of (Z)- α,β -Difluorostyrenes to
(E)- α,β -Difluoro- β -iodostyrenes

entry	product	no.	method	yield ^a
1	p-CH ₃ OC ₆ H ₄ CF=CFI	22	А	87
2	p-CH ₃ OC ₆ H ₄ CF=CFI	22	В	85
3	$C_6H_5CF=CFI$	23	В	83
4	p-CH ₃ C ₆ H ₄ CF=CFI	24	В	65
5	o-(CH ₃) ₂ CHC ₆ H ₄ CF=CFI	25	В	54
6	p-CF ₃ C ₆ H ₄ CF=CFI	26	А	92 ^b
7	p-CF ₃ C ₆ H ₄ CF=CFI	26	В	81
8	p-EtO ₂ CC ₆ H ₄ CF=CFI	27	В	39 ^c
9	p-EtO ₂ CC ₆ H ₄ CF=CFI	27	А	77^d
10	m-ClC ₆ H ₄ CF=CFI	28	А	85^d

^{*a*} Isolated yields, based on ArCF=CFH. ^{*b*} Product obtained as a mixture containing Bu₃SnI; an analytical sample of **26** (30%) was obtained by chromatography. ^{*c*} LTMP substituted for *n*-BuLi. ^{*d*} One-flask procedure: the vinylstannane intermediate was treated directly with I₂.

reported to undergo decomposition at temperatures above –85 °C whereas the major (*E*)-isomer exhibited thermal stability up to –5 °C.^{9,20} The difference in stability is presumably due to facile decomposition of (*Z*)-PhCF=CFLi via an anti β -elimination pathway, unavailable to the (*E*)-isomer, to give PhC=CF and LiF.⁹

The stereochemistry of both the (Z)- α , β -difluorostyrenes and the (E)- α , β -difluoro- β -iodostyrenes was unambiguously assigned on the basis of ¹⁹F NMR coupling constants. All products exhibited vicinal couplings (${}^{3}J_{\text{F,F}}$ = 0–22 Hz) consistent with the *cis*-CF=CF stereochemistry vs the corresponding *trans*-CF=CF analogues (${}^{3}J_{\text{F,F}}$ = 100–140 Hz).^{9,11} ¹⁹F data for the (Z)- α , β -difluorostyrenes is presented in Table 3. The (Z)- α , β -difluorostyrenes and the (E)- α , β -difluoro- β -iodostyrenes, once purified, were stored for extended periods at 0–10 °C without significant decomposition or detectable isomerization.

In conclusion, we have described a general method for the stereoselective preparation of (Z)- α , β -difluorostyrenes and for their subsequent stereospecific conversion to (E)-

Table 3. ¹⁹F NMR Data of (Z)- α , β -Difluorostyrenes^a

h

а

		Ar H C	a: c b: c			
no.	subst	а	b	$J_{\rm ab}$	$J_{\rm ac}$	$J_{\rm bc}$
5	Н	-142.6	-164.8	11.8	17.0	73.2
6	p-CH ₃ O	-140.9	-167.1	12.8	14.9	73.4
7	$p-NO_2$	-143.7	-157.3	9.8	16.0	71.2
8	$o-NO_2$	-145.8	-156.4	15.8	12.9	71.9
9	p-CH ₃	-142.1	-166.1	12.0	15.9	73.2
10	<i>p</i> -EtO ₂ C	-143.7	-161.2	10.2	15.7	71.9
11	p-CH ₃ C(O)	-143.9	-160.6	10.1	16.9	72.0
12	m-Cl	-142.9	-162.5	10.5	16.9	71.9
13	<i>p</i> -HFC=CF	-143.6	-162.9	11.4	16.7	72.3
14	p-CF ₃ ^b	-143.7	-161.0	10.3	16.9	71.8
15	o-(CH ₃) ₂ CH	-121.2	-159.4	19.1	17.8	74.3

^{*a*} All spectra were recorded in CDCl₃ and chemical shifts are reported in ppm *vs* internal CFCl₃ standard. ^{*b*} *p*-CF₃ appears at -63.6 (s, 3F).

 α,β -difluoro- β -iodostyrenes. Work aimed at utilizing the resultant styrenes in the stereospecific construction of functionalized fluorinated alkenes is in progress.

Experimental Section

General. All glassware was oven-dried prior to use. ¹H NMR and ${}^{1}H{}^{13}C$ NMR spectra were recorded at 300 MHz and referenced against internal tetramethylsilane (TMS). ¹⁹F NMR spectra were recorded at 300 or 90 MHz and referenced vs internal CFCl₃. GC-MS spectra were obtained at 70 eV in the electron impact mode and reported as m/z (rel intens). High-resolution mass spectral determinations were made at the University of Iowa High-Resolution Mass Spectrometry Facility. GLPC analyses were carried out on a 5% OV-101 column with a thermal conductivity detector.

Materials. DMF and DMSO were distilled from CaH₂. THF and Et₂O were distilled from sodium benzophenone ketyl. KF was dried by azeotropic distillation with benzene. Pd- $(PPh_3)_4$ was prepared according to Coulson's procedure.²¹ *n*-BuLi, 2,2,6,6-tetramethylpiperidine, and all aryl iodides were obtained from commercial sources and used without further purification.

Preparation of (E)-HFC=CFZnI (3). A 250 mL, threenecked flask equipped with a magnetic stir bar, thermometer adapter, coldfinger condenser set to -20 °C, and N₂ source, was charged with anhydrous KF (12.7 g, 219 mmol), I₂ (38 g, 150 mmol), and 90 mL of DMSO. To the stirred mixture was added (E)-HFC=CFSiEt₃, 1 (13.0 g, 73 mmol, E:Z 95:5), via syringe, in one portion. An exotherm resulted (60-70 °C) followed by cooling to rt. The reaction mixture was stirred at rt for an additional 36 h or until no starting material was detected by ¹⁹F NMR analysis. The reaction flask was connected to a liquid N₂ cooled receiver and flash distilled (ca. 60 °C bath temperature, 10 mmHg). The contents of the reaction flask were periodically analyzed by ¹⁹F NMR to determine when all product had been removed from the reaction mixture. The cooled receiver contained $\mathbf{2}$, Et₃SiF, and DMSO. The distillate was then redistilled through a short path apparatus at atmospheric pressure, and a mixture of 2 and Et₃SiF was collected and used without further purification (bp 50-105 °C). ¹⁹F NMR for **2** (CDCl₃) -106.5 (d, ³ $J_{F,H} = 15.2$ Hz, 1 F), -130.7(d, ${}^{2}J_{\text{F,H}} = 75.2$ Hz, 1 F).

A 50 mL flask equipped with a cold-water condenser, magnetic stir bar, N₂ source, and septum port, was charged with acid-washed Zn metal (4.9 g, 75 mmol) and 30 mL of DMF. A volume of $2/Et_3SiF$ mixture (ca. 25 mmol) was added *via* syringe in one portion. Induction occurred in 20–30 min and an exotherm was observed. The remainder of the starting material (25 mmol) was added dropwise, with the temperature maintained at ≤ 60 °C. The dark-colored mixture was stirred

an additional 45 min, and formation of **3** was confirmed by ¹⁹F NMR analysis of the reaction mixture (**3:4** 93:7). The molarity of the vinylzinc reagent was determined by internal PhCF₃ standard. The excess Zn was allowed to settle, and the solution was filtered through a coarse-fritted funnel and the vinylzinc reagent was stored under N₂ at rt. ¹⁹F NMR for **3** (DMF solution) –149.2 (d, ²*J*_{F,H} = 83 Hz, 1 F), –146.8 (d, ³*J*_{F,H} = 29 Hz, 1 F); ¹⁹F NMR for (*Z*)-HFC=CFH, **4** (DMF solution) –164.2 (dd, ²*J*_{F,H} = 66 Hz, ³*J*_{F,H} = 32 Hz).

General Procedure for the Preparation of (Z)- α , β -Difluorostyrenes. Preparation of (Z)-p-CO₂EtC₆H₄-**CF=CFH** (10). A two-necked, 25 mL flask equipped with a N₂ source, magnetic stir bar, and rubber septum was charged with Pd(PPh₃)₄ (0.29 g, 0.25 mmol, 3 mol %) and p-CO₂EtC₆H₄I (2.3 g, 8.3 mmol). A DMF solution of 3 (12 mmol) was added via syringe, and the resultant mixture was stirred 2 h at rt. The reaction mixture was diluted with cold water (75 mL) and extracted with 1:1 pentane:Et₂O (4 \times 50 mL). The combined extracts were dried (MgSO₄) and concentrated by rotary evaporation. Chromatography on SiO₂ (80% pentane-EtOAc, R_f 0.5) gave 1.63 g (93%) of 10 as a pale-yellow solid: mp 52-53 °C; ¹H NMR (CDCl₃) δ 1.4 (t, 7.1 Hz, 3 H), 4.4 (q, 7.1 Hz, 2 H), 7.1 (dd, 72.5, 16.9 Hz, 1 H), 7.5 (d, 8.4 Hz, 2 H), 8.0 (d, 8.3 Hz, 2 H); ¹³C NMR (CDCl₃) δ 14.3, 61.3, 123.2, (t, 4.2 Hz), 130.0, 131.2, 133.1 (d, 23.5 Hz), 135.4 (dd, 260.6, 15.1 Hz), 145.7 (dd, 247.5, 10.9 Hz), 165.8; FTIR (CCl₄) 3122 (w), 2984 (w), 1724 (s), 1694 (s), 1411 (m), 1275 (s), 1146 (s), 1108 (s), 1013 (m) cm⁻¹; HRMS calcd for $C_{11}H_{10}F_2O_2$ 212.0649, obsd 212.0641

(Z)-C₆H₅CF=CFH (5). According to the general procedure, C₆H₅I (1.63 g, 8.0 mmol), Pd(PPh₃)₄, and **3** (12 mmol) were stirred 2 h at rt. Following the standard workup, the solvent was removed at atmospheric pressure. Chromatography on SiO₂ (pentane, R_f 0.4) gave 0.73 g (65%) of **5** as an oil: GLPC > 99%; ¹H NMR (CDCl₃) δ 6.9 (dd, J = 72.9, 17.1 Hz, 1 H), 7.4 (m, 5 H); ¹³C NMR (CDCl₃) δ 148.5 (dd, 247.0, 10.2 Hz), 134.1 (dd, J = 256.7, 15.6 Hz), 129.3, 129.0, 128.7, 123.6 (J = t, 5.5 Hz); GC-MS 140 (M⁺, 100), 139 (26), 120 (17), 119 (18), 114 (26), 101 (13), 89 (13), 63 (18), 51 (17); HRMS calcd for C₈H₆F₂ 140.0438, obsd 140.0430; FTIR (CCl₄) 3120 (w), 3066 (w), 1697 (s), 1335 (s), 1292 (m), 1142 (s), 1041 (s), 837 (s) cm⁻¹.

(*Z*)-*p*-CH₃OC₆H₄CF=CFH (6). According to the general procedure, *p*-CH₃OC₆H₄I (4.2 g, 18.0 mmol), Pd(PPh₃)₄, and **3** (25 mmol) were stirred 2 h at rt. Following the standard workup, chromatography on SiO₂ (85% pentane–EtOAc, *R_f* 0.6) gave 2.6 g (85%) of **6** as a low-melting solid: GLPC 96%; ¹H NMR (CDCl₃) δ 3.8 (s, 3 H), 6.8 (dd, *J* = 73.4, 17.3 Hz, 1 H), 6.9 (d, *J* = 8.7 Hz, 2 H), 7.3 (d, *J* = 8.7 Hz, 2 H); ¹³C NMR (CDCl₃) δ 160.7, 148.7 (dd, *J* = 246.3, 10.0 Hz), 133.2 (dd, *J* = 254.3, 16.3 Hz), 125.6 (t, *J* = 4.5 Hz), 121.3 (d, *J* = 24.4 Hz), 114.3, 55.3; GC-MS 170 (M⁺, 100) 171 (10), 155 (55), 127 (67), 101 (15); HRMS calcd for C₉H₈F₂O 170.0543, obsd 170.0543; FTIR (CCl₄) 2959 (w), 2839 (w), 1699 (m), 1610 (s), 1252 (s), 1138 (s), 1023 (s), 820 (m) cm⁻¹.

(*Z*)-*p*-NO₂C₆H₄CF=CFH (7). According to the general procedure, *p*-NO₂C₆H₄I (1.25 g, 5.0 mmol), Pd(PPh₃)₄, and **3** (7.5 mmol) were stirred 1 h at 0 °C and 3 h at rt. Following the standard workup, chromatography on SiO₂ (85% hexanes-EtOAc, R_f 0.4) gave 0.62 g (66%) of **7** as a yellow solid: mp 78–79 °C; ¹H NMR (CDCl₃) δ 7.2 (dd, J = 71.2, 16.7 Hz, 1 H), 7.6 (d, J = 8.9 Hz, 2 H), 8.3 (d, J = 8.7 Hz, 2 H); ¹³C NMR (CDCl₃) δ 148.2, 147.0 (dd, J = 248.0, 11.9 Hz), 136.4 (dd, J = 264.3, 14.9 Hz), 135.2 (d, J = 23.9 Hz), 124.2, 124.1 (t, J = 4.5 Hz); GC-MS 185 (M⁺, 100), 155 (36), 139 (13), 138 (17), 127 (37), 119 (77), 99 (44), 88 (16), 63 (31); HRMS calcd for C₈H₅F₂-NO₂ 185.0288, obsd 185.0295; FTIR (CCl₄) 3122 (w), 2927 (w), 2856 (w), 1693 (m), 1528 (s), 1337 (s), 1151 (s), 1020 (m), 870 (m) cm⁻¹.

(*Z*)-*o*-NO₂C₆H₄CF=CFH (8). According to the general procedure, *o*-NO₂C₆H₄I (1.25 g, 5.0 mmol), Pd(PPh₃)₄, and **3** (7.5 mmol) were stirred 2 h at rt. Following the standard workup, chromatography on SiO₂ (CH₂Cl₂, R_f 0.75) gave 0.72 g (78%) of **8** as a yellow-orange solid: mp 69–70 °C; ¹H NMR (CDCl₃) δ 6.8 (dd, J = 71.9, 15.8 Hz, 1 H), 7.5 (d, J = 7.0 Hz, 1 H), 7.7 (m, 2 H), 8.0 (dd, J = 7.3, 1.8 Hz, 1 H); ¹³C NMR (CDCl₃) δ 147.9, 145.8 (dd, J = 251.5, 12.9 Hz), 135.4 (dd, J =

261.5, 15.2 Hz), 133.4, 131.5, 131.3, 125.0, 123.0 (dd, J = 21.8, 3.8 Hz); GC-MS 185 (M⁺, 10), 138 (14), 127 (50), 119 (29), 109 (100), 107 (24), 101 (27), 99 (36), 89 (22), 63 (34); HRMS calcd for C₈H₅F₂NO₂ 185.0288, obsd 185.0272; FTIR (CCl₄) 3117 (w), 1541 (s), 1338 (s), 1258 (w), 1142 (s), 1017 (m), 861 (w) cm⁻¹.

(2)-*p*-CH₃C₆H₄CF=CFH (9). According to the general procedure, *p*-CH₃C₆H₄I (1.75 g, 8.0 mmol), Pd(PPh₃)₄, and **3** (12 mmol) were stirred 2 h at rt. Following the standard workup, the solvent was removed at atmospheric pressure. Chromatography on SiO₂ (pentane, R_f 0.4) gave 0.89 g (72%) of **9** as an oil: GLPC > 99%; ¹H NMR (CDCl₃) δ 2.3 (s, 3 H), 6.9 (dd, J = 73.2, 17.2 Hz, 1 H), 7.1 (d, J = 8.2 Hz, 2 H), 7.2 (d, J = 8.2 Hz, 2 H); ¹³C NMR (CDCl₃) δ 148.7 (dd, J = 246.7, 10.8 Hz), 139.5 (d, J = 24.2 Hz), 123.6 (dt, J = 5.2 Hz), 21.1; GCMS 154 (M⁺, 100), 153 (65), 134 (17), 133 (59), 127 (14), 115 (6), 104 (10), 91 (6), 63 (11); HRMS calcd for C₉H₈F₂ 154.0594, obsd 154.0585; FTIR (CCl₄) 3122 (w), 3036 (w), 2924 (w), 1698 (s), 1542 (s), 1331 (s), 1291 (m), 1137 (s), 1012 (s) cm⁻¹

(*Z*)-*p*-CH₃(CO)C₆H₄CF=CFH (11). According to the general procedure, *p*-CH₃C(O)C₆H₄I (1.85 g, 7.5 mmol), Pd(PPh₃)₄, and **3** (11 mmol) were stirred 3 h at rt. Following the standard workup, chromatography on SiO₂ (90% pentane-EtOAc, R_f 0.2) gave 0.97 g (71%) of **11** as a pale-yellow solid: mp 48–49 °C; ¹H NMR (CDCl₃) δ 2.6 (s, 3 H), 7.1 (dd, J = 72.5, 16.9 Hz, 1 H), 7.5 (d, J = 8.4 Hz, 2 H), 7.9 (d, 8.4 Hz, 2 H); ¹³C NMR (CDCl₃) δ 197.0, 147.5 (dd, J = 247.6, 11.0 Hz), 137.4 (d, J = 2.3 Hz), 135.5 (dd, J = 261.2, 15.1 Hz), 133.2 (d, J = 2.4 Hz), 123.3 (t, J = 5.5 Hz), 128.7, 26.4; GC-MS 182 (M⁺, 35), 167 (100), 139 (36), 119 (52), 99 (14), 63 (9), 43 (28); HRMS calcd for C₁₀H₈F₂O 182.0543, obsd 182.0545; FTIR (CCl₄) 3122 (w), 1691 (s), 1609 (m), 1359 (m), 1267 (s), 1148 (s), 1011 (m) cm⁻¹.

(*Z*)-*m*-ClC₆H₄CF=CFH (12). According to the general procedure, *m*-ClC₆H₄I (1.55 g, 6.5 mmol), Pd(PPh₃)₄, and **3** (9 mmol) were stirred 2 h at rt. Following the standard workup, the solvent was removed at atmospheric pressure. Chromatography on SiO₂ (pentane, R_f 0.4) gave 0.68 g (60%) of **12** as an oil: GLPC > 99%; ¹H NMR (CDCl₃) δ 7.0 (dd, J = 71.9, 16.9 Hz, 1 H), 7.2–7.4 (m, 4 H); ¹³C NMR (CDCl₃) δ 147.5 (dd, J = 247.8, 11.0 Hz), 134.8 (dd, J = 259.3, 15.1 Hz), 135.0, 130.8 (d, J = 23.9 Hz), 130.2, 123.8 (t, J = 4.7 Hz), 129.5, 121.7 (t, J = 4.2 Hz); GC-MS 174 (M⁺, 100) 176 (M⁺, 32) 139 (56), 138 (16), 120 (10), 119 (48), 99 (11), 63 (7); HRMS calcd for C₈H₅-³⁵ClF₂ 174.0048, obsd 174.0063; FTIR (CCl₄) 3126 (w), 1698 (m), 1566 (s), 1327 (w), 1148 (m), 1038 (m) cm⁻¹.

(*Z*,*Z*)-*p*-(HFC=CF)C₆H₄(CF=CFH) (13). According to the general procedure, *p*-C₆H₄I₂ (1.65 g, 5.0 mmol), Pd(PPh₃)₄, and **3** (15 mmol) were stirred 2 h at rt. Following the standard workup, chromatography on SiO₂ (95% pentane–EtOAc, *R_f* 0.4) gave 0.81 g (80%) of **13** as a yellow solid: mp 41–42 °C; ¹H NMR (CDCl₃) δ 7.0 (dd, *J* = 72.3, 17.1 Hz, 2 H), 7.4 (s, 4 H); ¹³C NMR (CDCl₃) δ 147.9 (dd, *J* = 246.9, 11.0 Hz), 134.6 (dd, *J* = 259.2, 15.4 Hz), 129.7 (d, 24.0 Hz), 123.8 (t, *J* = 3.8 Hz); GC-MS 202 (M⁺, 100), 200 (7), 183 (5), 182 (20), 151 (36), 133 (9), 114 (3); HRMS calcd for C₁₀H₆F₄ 202.0406, obsd 202.0408; FTIR (CCl₄) 3122 (w), 1696 (s), 1413 (w), 1339 (m), 1296 (w), 1146 (s), 1040 (s), 1009 (m), 840 (m) cm⁻¹.

Preparation of 13 by Reaction of 3 and *p*-BrC₆H₄I, 16. According to the general procedure, 16 (1.43 g, 5.0 mmol), Pd-(PPh₃)₄, and **3** (10 mmol) were stirred 8 h at rt. Following the standard workup, chromatography on SiO₂ (85% pentane– EtOAc, R_r 13 0.6, R_r 17 0.7) gave 0.33 g (33%) of 13 (mp 41– 42 °C) and 0.17 g of a mixture containing 17 and 13 (17:13 1:1). Data for 17: ¹⁹F NMR (CDCl₃) δ –143.1 (dd, 17.6, 10.6 Hz, 1 F), –163.4 (dd, 72.4, 11.9 Hz, 1 F); ¹H NMR (CDCl₃) δ 6.9 (dd, 72.4, 17.0 Hz, 1 H), 7.2 (d, 8.6 Hz, 2 H), 7.5 (d, 8.4 Hz, 2 H); GC-MS 220 (M⁺, 95.4), 218 (M⁺, 100), 139 (38.4), 138 (18.6), 120 (16.6), 119 (84.7), 99 (26.5), 88 (11.0), 63 (10.1), 50 (11.9).

(Z)-p-CF₃C₆H₄CF=CFH (14). According to the general procedure, p-CF₃C₆H₄I (3.2 g, 11.7 mmol), Pd(PPh₃)₄, and **3** (17 mmol) were stirred 2 h at rt. Following the standard workup, the solvent was removed at atmospheric pressure. Chromatography on SiO₂ (95% pentane-CH₂Cl₂, R_f 0.6) gave 1.7 g (70%) of **14** as an oil: GLPC 99%; ¹H NMR (CDCl₃) δ 7.1 (dd, J = 71.8, 16.9 Hz, 1 H), 7.5 (d, J = 8.4 Hz, 2 H), 7.6 (d, J

= 8.4 Hz, 2 H); 13 C NMR (CDCl₃) δ 147.5 (dd, J = 247.7, 11.1 Hz), 135.3 (dd, J = 260.8, 15.0 Hz), 132.5 (d, J = 24.1 Hz), 131.3 (q, J = 33.5 Hz), 125.8, 123.5 (q, J = 272.2 Hz), 123.7 (t, J = 5.5 Hz); GC-MS 208 (M^+, 100), 189 (27), 187 (11), 169 (13), 158 (28), 139 (34), 138 (15), 119 (22), 63 (6); HRMS calcd for C₉H₅F₅ 208.0311, obsd 208.0289; FTIR (CCl₄) 3123 (w), 1696 (m), 1622 (w), 1334 (s), 1163 (s), 1070 (w), 1020 (m) cm^{-1}.

(Z)-o-(CH₃)₂CHC₆H₄CF=CFH (15). According to the general procedure, o-(CH₃)₂CHC₆H₄I (2.46 g, 10.0 mmol), Pd-(PPh₃)₄, and **3** (15 mmol) were stirred 8 h at 60 °C. Following the standard workup, chromatography on SiO₂ (pentane, R_f 0.5) gave 1.0 g (55%) of 15 as an oil: GLPC > 99%; ¹H NMR (CDCl₃) δ 3.2 (septet of doublets, J = 6.8, 2.8 Hz, 1 H), 1.2 (d, J = 6.8 Hz, 6 H), 6.5 (dd, J = 74.3, 16.2 Hz, 1 H), 7.1-7.3 (m, 2 H), 7.3–7.4 (m, 2 H); ¹³C NMR (CDCl₃) δ 149.8 (d, J = 4.2Hz), 148.0 (dd, J = 253.2, 9.4 H), 135.0 (dd, J = 258.5, 17.0 Hz), 131.0 (d, J = 1.8 Hz), 130.6 (t, J = 2.4 Hz), 126.7 (dd, J= 20.7, 1.8 Hz), 126.0 (d, J = 1.5 Hz), 125.7, 30.5 (d, J = 2.3 Hz), 24.0; FTIR (CCl₄) 2967 (m), 1709 (m), 1559 (s), 1449 (w), 1320 (m), 1131 (m), 1011 (m), 826 (w) cm⁻¹; GC-MS 182 (M⁺, 12), 167 (100), 149 (13), 147 (85), 146 (48), 133 (23), 129 (34), 128 (13), 127 (37), 115 (18); HRMS calcd for C₁₁H₁₂F₂ 182.0907, obsd 182.0893.

General Procedure for Conversion of (Z)- α , β -Difluorostyrenes to (*E*)- α , β -Difluoro- β -iodostyrenes. Preparation of (E)-p-MeOC₆H₄CF=CFI (22). Method A. A threenecked, 50 mL flask equipped with a magnetic stir bar, N_2 source, low-temperature thermometer adapter, and septum port was charged with THF (20 mL) and 2,2,6,6-tetramethylpiperidine (1.2 g, 8.1 mmol). The solution was cooled to -20^oC via dry ice/IPA bath. *n*-BuLi (8.1 mmol, 2.5 M in hexanes) was added dropwise at ≤ 0 °C. The resultant LTMP solution was stirred an additional 5 min at 0 °C. A 50 mL, threenecked flask equipped with a low-temperature thermometer adapter, N₂ source, magnetic stir bar, and septum port was charged with $\boldsymbol{6}$ (1.05 g, 6.27 mmol), THF (20 mL), and Bu_3-SnCl (2.6 g, 7.9 mmol). The solution was cooled to -78 °C via dry ice/IPA bath. The LTMP base solution was added dropwise via syringe at -78 °C. After addition was complete, the solution was stirred at -78 °C for 1 h and allowed to warm to rt. The mixture was poured into water (75 mL) and extracted with Et_2O (3 \times 75 mL). The Et_2O fractions were dried (MgSO₄) and concentrated by rotary evaporation. Chromatography on SiO₂ (85% hexanes-EtOAc, R_f 0.6) gave 2.77 g (95%) of (E)*p*-MeOC₆H₄CF=CFSnBu₃, **19a**, as an oil: ¹⁹F NMR (CDCl₃) δ -109.7 (d, J = 5.6 Hz, 1 F), -140.6 (d, J = 5.6 Hz, 1 F), -140.6(dd $J_{\text{FSn}} = 168.5$ Hz, $J_{\text{FF}} = 5.6$ Hz; ¹H NMR (CDCl₃) δ 0.9–1.5 (m, 27 H), 3.8 (s, 3 H), 6.9 (d, J = 9.0 Hz, 2 H), 7.3 (d, J = 9.0Hz, 2 H); ¹³C NMR (CDCl₃) δ 160.9, 155.4 (dd, J = 258.9, 11.1 Hz), 153.2 (d, J = 308.0 Hz), 129.9, 123.3 (dd, J = 26.1, 3.2 Hz), 113.9, 55.3, 28.8, 28.8 (d, $J_{CSn} = 23$ Hz), 27.2, 27.2 (d, $J_{CSn} = 64$ Hz), 13.6, 10.8, 10.8 (d, $J_{CSn} = 362$ Hz); FTIR (CCl₄) 2958 (s), 2926 (s), 2873 (m), 1643 (w), 1609 (m), 1512 (s), 1458 (m), 1250 (s), 1030 (s) cm⁻¹; GC-MS 403 (M⁺ - C₄H₈, 35), 401 (27), 399 (16), 253 (67), 251 (54), 249 (33), 177 (60), 159 (83), 150 (100), 135 (70), 107 (57), 57 (60). A two-necked, 25 mL flask equipped with a magnetic stir bar, N₂ source, and septum port was charged with I_2 (2.1 g, 8.0 mmol) and DMF (15 mL). A solution of vinylstannane 19a (2.3 g, 5.0 mmol, in 5 mL DMF) was added in one portion via syringe, and the mixture was stirred 1 h at rt. The mixture was diluted with hexane (250 mL) and washed with saturated aq NaHSO₃ (75 mL). The hexane fraction was dried (MgSO₄) and concentrated by rotary evaporation. Chromatography on SiO2 (85% hexanes-EtOAc, $R_f 0.4$) gave 1.35 g (87%, based on 6) of 22 as a clear oil: GLPC \geq 99%; ¹⁹F NMR (CDCl₃) δ -102.9 (bs, 1 F), -107.6 (bs, 1 F); ¹H NMR (CDCl₃) δ 3.8 (s, 3 H), 6.9 (d, J = 8.9 Hz, 2 H), 7.5 (d, J = 8.9 Hz, 2 H); ¹³C NMR (CDCl₃) δ 160.9, 147.8 (dd, J =256.7, 13.0 Hz), 130.4, 120.5 (d, J = 24.5 Hz), 113.7, 95.2 (dd, J = 325.8, 34.4 Hz), 55.3; GC-MS 296 (M⁺, 77), 281 (18), 169 (12), 154 (54), 126 (100), 107 (20), 101 (16), 75 (21), 62 (17); HRMS calcd for C₉H₇OF₂I 295.9510, obsd 295.9505; FTIR (CCl₄) 2960 (w), 2841 (w), 1610 (s), 1513 (s), 1255 (s), 1033 (s), 766 (s) cm⁻¹

Method B. A three-necked, 50 mL flask equipped with a magnetic stir bar, N_2 source, and septum port was charged

with 3:2 THF:Et₂O (30 mL) and **6** (1.25 g, 7.35 mmol) and cooled to -100 °C via liquid N₂/pentane bath. *n*-BuLi (9.6 mmol, 2.5 M in hexanes) was added dropwise via syringe at -95 to -100 °C. After addition was complete, the solution was stirred 30 min at -100 °C. A solution of I₂ (2.8 g, 11 mmol, in 15 mL THF) was added dropwise at -100 °C. The resultant solution was stirred an additional 30 min at -100 °C and allowed to warm to -20 °C. Dilute HCl (2 mL) was added dropwise and the solution was allowed to warm to r. The mixture was poured into saturated aq NaHSO₃ (50 mL) and extracted with Et₂O (3 × 75 mL). The Et₂O fractions were dried (MgSO₄) and concentrated by rotary evaporation. Chromatography on SiO₂ (80% hexanes–EtOAc, R_f 0.4) gave 1.75 g (85%) of **22**: GLPC > 99%.

(*E*)-C₆H₅CF=CFI (23). Method B. Preparation of 23 was carried out according to the general procedure using 5 (0.55 g, 3.9 mmol), 1:1 THF:Et₂O (30 mL), *n*-BuLi (5.1 mmol), and I₂ (1.6 g, 6.2 mmol). Following the standard workup, chromatography on SiO₂ (pentane, R_f 0.4) gave 0.86 g (83%) of 23 as an oil: GLPC > 98%; ¹⁹F NMR (CDCl₃) δ -101.1 (d, J = 5.1 Hz, 1 F), -109.0 (d, J = 5.1 Hz, 1 F); ¹H NMR (CDCl₃) δ 7.4 (m, 3 H), 7.6 (m, 2 H); ¹³C NMR (CDCl₃) δ 147.9 (dd, J = 257.0, 12.8 Hz), 130.3, 128.8 (d, J = 7.0 Hz), 128.7, 128.3, 96.1 (dd, J = 362.2, 33.6 Hz); GC-MS 266 (M⁺, 100.0), 140 (3.3), 139 (33.3), 138 (11.3), 127 (5.1), 119 (35.8), 99 (14.4), 75 (3.7), 63 (7.1); FTIR (CCl₄) 3063 (w), 1653 (m), 1495 (w), 1446 (w), 1302 (m), 1280 (m), 1130 (s), 1057 (s), 1025 (m), 884 (s) cm⁻¹; HRMS calcd for C₈H₅F₂I 265.9404, obsd 265.9391.

(*E*)-*p*-CH₃C₆H₄CF=CFI (24). Method B. Preparation of 24 was carried out according to the general procedure using 9 (2.3 g, 14.9 mmol), 3:2 THF:Et₂O (50 mL), *n*-BuLi (19.5 mmol), and I₂ (6.1 g, 24 mmol). Following the standard workup, chromatography on SiO₂ (pentane, R_f 0.4) gave 2.7 g (65%) of 24 as an oil: GLPC > 98%; ¹⁹F NMR (CDCl₃) δ -102.2 (d, J = 4.2 Hz, 1 F), -108.6 (d, J = 4.2 Hz, 1 F); ¹H NMR CDCl₃) δ 2.4 (s, 3 H), 7.2 (d, J = 8.0 Hz, 2 H), 7.5 (d, J = 8.2 Hz, 2 H); ¹³C NMR (CDCl₃) δ 148.0 (dd, J = 256.6, 12.8 Hz), 140.6, 129.0, 128.7 (t, J = 3.4 Hz), 125.7 (d, J = 24.0 Hz), 95.7 (dd, J = 325.9, 34.2 Hz), 21.4; FTIR (CCl₄) 3036 (w), 2925 (w), 1657 (m), 1612 (m), 1514 (m), 1300 (s), 1130 (s), 1052 (s), 886 (s) cm⁻¹; GC-MS 280 (M⁺, 100.0), 153 (20.6), 151 (35.9), 138 (13.1), 133 (79.4), 127 (31.9), 125 (52.2), 107 (9.1), 101 (7.5), 75 (10.3); HRMS calcd for C₉H₇F₂I 279.9561, obsd 279.9587.

(E)-o-(CH₃)₂CHC₆H₄CF=CFI (25). Method B. Preparation of 25 was carried out according to the general procedure using 15 (0.75 g, 4.1 mmol), 1:1 THF:Et₂O (20 mL), n-BuLi (5.3 mmol), and I_2 (1.7 g, 6.6 mmol). Following the standard workup, chromatography on SiO₂ (pentane, $R_f 0.5$) gave 0.67 g (54%) of **25** as an oil: GLPC 98%; ¹⁹F NMR (CDCl₃) δ -98.1 (bs, 1 F), -103.5 (bs, 1 F); ¹H NMR (CDCl₃) 1.2 (d, J = 7.0 Hz, 6 H), 3.1 (septet of doublets, J = 2.5 Hz, 1 H), 7.1–7.5 (m, 4 H); ¹³C NMR (CDCl₃) δ 149.8 (d, J = 3.4 Hz), 147.5 (dd, J =263.0, 11.0 Hz), 132.0 (dd, J = 3.4, 1.2 Hz), 131.5 (d, J = 3.0Hz), 98.6 (dd, J = 329.6, 33.6 Hz), 127.5 (d, J = 21.0 Hz), 126.5 (d, J = 12.5 Hz), 126.0 (dd, J = 4.5, 2.1 Hz), 30.9, 24.0; FTIR (CCl₄) 2967 (s), 2871 (w), 1676 (m), 1457 (m), 1295 (s), 1267 (m) 1128 (s), 1026 (s), 872 (s) cm⁻¹; GC-MS 308 (M⁺, 8.7), 181 (44.1), 166 (19.5), 165 (23.3), 164 (19.5), 151 (49.3), 146 (100.0), 133 (28.7), 115 (29.2); HRMS calcd for C₁₁H₁₁F₂I 307.9874, obsd 307.9862

(E)-p-CF₃C₆H₄CF=CFI (26). Method A. Preparation of 26 was carried out according to the general procedure using 14 (1.7 g, 8.2 mmol), Bu₃SnCl (3.25 g, 10.0 mmol), THF (25 mL), and a solution of LTMP prepared from 2,2,6,6-tetramethylpiperidine (1.50 g, 10.4 mmol), n-BuLi (10.4 mmol), and THF (20 mL). Following the standard workup, chromatography on SiO₂ (85% hexanes-EtOAc, $R_f 0.7$) gave 3.9 g (96%) of (E)-p-CF₃C₆H₄CF=CFSnBu₃, **19b**, as an oil: ¹⁹F NMR (CDCl₃) δ –135.0 (bs, 1 F), –135.0 (d, J_{FSn} = 192 Hz), –115.5 (bs, 1 F), -64.6 (s, 3 F); ¹H NMR (CDCl₃) δ 0.8-1.5 (m, 27 H), 7.5 (d, J = 8.2 Hz, 2 H), 7.6 (d, J = 8.2 Hz, 2 H); ¹³C NMR (CDCl₃) δ 156.4 (d, J = 312.0 Hz), 154.6 (dd, J = 269.0, 12.3 Hz), 134.7 (d, J = 26.9 Hz), 131.6 (q, J = 32.9 Hz), 127.8 (t, J = 3.2 Hz), 125.5 (q, J = 3.6 Hz), 123.9 (q, J = 271.7 Hz), 28.9 (d, $J_{CSn} =$ 22 Hz), 27.2 (d, $J_{CSn} = 54$ Hz), 13.6, 11.0 (d, $J_{CSn} = 366$ Hz); FTIR (CCl₄) 2960 (s), 2926 (s), 2855 (m), 1326 (s), 1173 (m),

1137 (m), 1070 (s), 847 (m) cm⁻¹. Conversion of **19b** to **26** was carried out using 19b (3.9 g, 7.85 mmol), I₂ (3.20 g, 12.6 mmol), and DMF (20 mL). Following analogous workup, the residue was twice chromatographed on SiO₂ (pentane, $R_f 0.5$) to give 3.0 g of an oil containing 26 and Bu₃SnI (26:Bu₃SnI 1.6:1.0) and an additional 0.83 g (30%) of ${\bf 26}$ as an analytically pure sample: GLPC > 99%; ¹⁹F NMR (CDCl₃) δ -63.6 (s, 3 F), -97.5 (d, J = 4.2 Hz, 1 F), -111.0 (d, J = 4.2 Hz, 1 F); ¹H NMR (CDCl₃) δ 7.7 (d, J = 8.3 Hz, 2 H), 7.8 (d, J = 8.3 Hz, 2 H); ¹³C NMR (CDCl₃) δ 146.9 (dd, J = 257, 14 Hz), 132.4 (d, J = 23 Hz), 132.3 (q, J = 32.8 Hz), 129.0 (t, J = 3.5 Hz), 125.5 (q, J = 1.9 Hz), 123.7 (q, J = 272 Hz), 97.4 (dd, J = 328, 32 Hz); GC-MS 334 (M⁺, 58), 315 (6), 207 (35), 133 (13), 187 (67), 156 (11), 142 (17), 138 (100), 69 (13); HRMS calcd for C₉H₄F₅I 333.9278, obsd 333.9283; FTIR (CCl₄) 2959 (m), 2928 (m), 2860 (w), 1326 (s) 1175 (s), 1138 (s), 1074 (s), 886 (m) cm⁻¹.

Method B. Preparation of **26** was carried out according to the general procedure using **14** (1.37 g, 6.6 mmol), 1:1 THF: Et₂O (50 mL), *n*-BuLi (8.6 mmol), and I₂ (2.7 g, 10.6 mmol). Following the standard workup, chromatography on SiO₂ (pentane, R_f 0.5) gave 1.78 g (81%) of **26**: GLPC > 99%.

(E)-p-CO₂EtC₆H₄CF=CFI (27). Method A. Preparation of 27 was carried out according to the general procedure using 10 (1.21 g, 5.7 mmol), THF (25 mL), Bu₃SnCl (2.3 g, 7.1 mmol), and a solution of LTMP prepared from 2,2,6,6-tetramethylpiperidine (1.05 g, 7.4 mmol) and n-BuLi (7.5 mmol) in 10 mL of THF. The reaction mixture containing the intermediate (E)p-CO₂EtC₆H₄CF=CFSnBu₃, **19c**, was treated directly with I₂ (2.3 g, 9.1 mmol) at rt and stirred overnight. Following the standard workup, chromatography on SiO2 (80% hexanes-EtOAc, R_f 0.45) gave 1.49 g (77%) of **27** as yellow-orange solid: mp 44 °C; ¹⁹F NMR (CDCl₃) δ -97.7 (d, J = 5.7 Hz, 1 F), -111.1 (d, J = 5.7 Hz, 1 F); ¹H NMR (CDCl₃) δ 8.1 (d, J =8.1 Hz, 2 H), 7.7 (d, J = 8.3 Hz, 2 H), 4.4 (q, J = 7.0 Hz, 2 H), 1.4 (t, J = 7.0 Hz, 3 H); ¹³C NMR (CDCl₃) δ 165.5, 147.2 (dd, J = 256.3, 13.8 Hz), 132.5 (d, J = 23.8 Hz), 131.8, 129.4, 128.4 (t, J = 3.3 Hz), 97.1 (dd, J = 328.1, 32.4 Hz), 61.3, 14.2; GC-MS 338 (M⁺, 47.4), 310 (31.9), 293 (100.0), 265 (9.9), 183 (3.2), 138 (81.0), 119 (14.0), 112 (10.5), 88 (17.5), 87 (14.3); FTIR (CCl₄) 2983 (m), 2961 (m), 2931 (m), 1726 (s), 1408 (w), 1276 (s), 1108 (s), 1054 (s), 888 (m) cm⁻¹; HRMS calcd for $C_{11}H_9F_2$ -IO₂ 337.9615, obsd 337.9611.

Method B. Preparation of **27** was carried out according to the general procedure using **10** (1.04 g, 4.95 mmol), 3:2 THF: Et₂O (30 mL), a solution of LTMP prepared from 2,2,6,6-tetramethylpiperidine (0.88 g, 6.2 mmol) and *n*-BuLi (6.2 mmol) in 10 mL of THF, and I₂ (2.0 g, 8.0 mmol). Following the standard workup, chromatography on SiO₂ (75% hexanes– EtOAc, R_f 0.5) gave 0.56 g (39%) of **27**.

(E)-m-ClC₆H₄CF=CFI (28). Method A. Preparation of 28 was carried out according to the general procedure using 12 (0.39 g, 2.24 mmol), 3:2 THF:Et₂O (30 mL), Bu₃SnCl (0.93 g, 2.86 mmol), and a solution of LTMP prepared from 2,2,6,6tetramethylpiperidine (0.41 g, 2.9 mmol) and n-BuLi (2.9 mmol) in 10 mL of THF. The reaction mixture containing the intermediate (E)-m-ClC₆H₄CF=CFSnBu₃, **19d**, was treated directly with I₂ (1.4 g, 5.5 mmol) at rt and stirred overnight. Following the standard workup, chromatography on SiO₂ (hexane, *R*_f 0.5) gave 0.56 g (85%) of **28** as an oil: GLPC 93%; ¹⁹F NMR (CDCl₃) δ -98.7 (d, J = 5.1 Hz, 1 F), -110.1 (d, J = 5.1 Hz, 1 F); ¹H NMR (CDCl₃) & 7.3-7.4 (m, 2 H), 7.5 (m, 1 H), 7.6 (m, 1 H); ¹³C NMR (CDCl₃) δ 146.7 (dd, J = 256.9, 13.7 Hz), 140.2, 134.4, 130.3, 129.6, 128.6 (t, J = 3.6 Hz), 126.8 (t, J = 3.4 Hz), 96.8 (dd, J = 328.1, 33.0 Hz); FTIR (CCl₄) 3072 (w), 1653 (w), 1558 (s), 1479 (w), 1415 (w), 1286 (m), 1134 (s), 1062 (s), 906 (s) cm^{-1} ; GC-MS 300 (M⁺, 64.4), 302 (M⁺, 21.5), 173 (31.3), 175 (10.5), 139 (9.4), 138 (100.0), 127 (9.1), 118 (6.3), 88 (7.8), 87 (15.1).

Acknowledgment. We would like to thank the National Science Foundation for financial support of this work.

Supporting Information Available: Copies of NMR spectra for compounds **5–15**, **17**, and **22–28** (42 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

JO971434O